

 ISSN 2229-6107 www.ijpast.in

 Vol 9,Issuse 2.May 2019

Evaluation of the effectiveness of creating mobile apps across a variety of

platforms
Dr. R. Rambabu , Mr. P S S K Sarma, Mrs. A. Josh Mary

Abstract:

Developers find it difficult to determine which platform to prioritize because each mobile operating system has its own

standards, programming languages, and distribution methods. Nevertheless, several web-based applications have been

reported to suffer significant performance drops when using these technologies; in response, web-based multiplatform

development tools follow the "create once, deploy everywhere" principle and can be distributed across multiple

platforms. This article presents the results of a study that looked at the effectiveness of mobile web applications powered

by Android that were created with the PhoneGap framework. We also provide the results of an experiment that measured

execution time to define the performance over

Keywords:Task Duration; Performance; PhoneGap; Android; Mobile

Introduction

Advances in mobile systems have made it possible for

portable terminals to transform from basic

communicators to potent computing instruments.

Modern mobile phones are so efficient, so accessible,

and so powerful that they can achieve things that were

before unthinkable.effectiveness, as well as other

options [1]. The foundation of smartphones has always

been robust operating systems that resemble a PC-like

modular program structure and make it simple for

consumers to install and uninstall apps. Every device

has a different operating system (OS), and each OS has

its own set of standards, languages, tools, and channels

for downloading and purchasing apps. Programmers are

faced with a dilemma since each platform has several

customers. Software developers may need to

incorporate a larger user base into their business plans

as theyThe utilization of multiplatform development

tools that follow the "create once, deploy everywhere"

philosophy is one efficient method to address this

problem. These tools include Sencha Touch,

Appellatory, PhoneGap, and others. These assets

leverage cross-platform technologies like HTML, CSS,

and JavaScript to control the functionality of the mobile

device using a suite of application programming

interfaces (APIs). API.In studies that predict a good

increase of web browser use as execution environment,

mobile target-agnostic development has been taken into

consideration [2, 3, 4, 5].Development-focused surveys

and case studies have demonstrated that tools still have

constraints that prevent them from offering a

comprehensive cross-platform solution, even if mobile

apps may be easily generated for many platforms [6, 7,

8].The main issues are the differences.

Professor & HOD, Assistant Professor1,2

Department of Computer Science & Engineering,

Rajamahendri Institute of Engineering & Technology, Rajamahendravaram.

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

Many believe that switching to web development

slows things down considerably, yet there are no

studies that quantify the amount that performance

drops as a result of the shift to the web to

substantiate this claim.This article attempts to shed

light on important performance issues raised by

web-based multiplatform development tools for

mobile applications using the results of a research

into the performance of mobile web apps created

using PhoneGap and deployed on the Android

operating system. We describe an experiment that

measured performance in terms of execution time

and compared the effort required to operate a web

application against its native version. The

remainder of the document is organized as follows:

The development tool that was chosen is

introduced in the following sections.
Assessment of performance

Metrics including execution time, memory use, and

energy consumption are a few that frequently yield

insightful results when assessing performance [9].

The primary emphasis of our research is

application execution time as a proxy for

overhead.The impact on the app's user experience

and its ability to communicate with the device's

hardware and operating system is evident.The time

it takes for a routine to finish cannot be determined

only by sampling that time. Ensuring fairness and

implementing suitable protocols for data

interpretation are essential when comparing two

machines, languages, or approaches. We developed

a suite of software algorithms that leverage various

mobile device hardware and software resources to

comprehend the influence of web technologies on

mobile application performance.

We took these actions and included them into two

different applications: one that was created using a

web-based environment and the other that made

use of a mobile OS's built-in development

capabilities. In this experimental context, we may

objectively compare and evaluate the two

methodologies. PhoneGap was chosen as the

development tool, while Android OS was chosen as

the target platform because of its openness,

adaptability, and accessibility. We compared the

two programs' execution times after running them

in an experimental setting in order to conclude the

investigation.
Framework for PhoneGap

The PhoneGap [11] framework, which is now part

of Apache Cordova, is a component of the Apache

Incubator. Using PhoneGap, you can create your

logic layer using HTML5 and JavaScript, and

utilize your smartphone's web browser as an

abstraction layer.the HTML and CSS display layer.

This foundation can be readily transferred to

different web browsers, just like it can with desktop

PCs. Unfortunately, this implies that JavaScript

cannot fully utilize the capabilities of the mobile

device, such as manipulating hardware

components, because script-based apps can only

operate inside the web browser's

runtime.Developers may easily manage low-level

components and telephony with PhoneGap's native

engine and APIs.

These APIs are made available to the browser by

the PhoneGap JavaScript engine, after which

JavaScript can utilize them. Because the logic layer

will utilize the appropriate interfaces and

extensions to access additional resources via

methods, this frees up developers to focus on

creating websites. Please see Figure 1. Because a

web browser and logic layer may function on any

operating system, this approach is ideal for

developing cross-platform apps.

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

Fig. 1. PhoneGap application architecture

As of version 1.3.0, PhoneGap is compatible with all the main

mobile OSes (such as Android, iOS, RIM, Windows Mobile,

etc.), yet it does not provide complete control over the

device's capabilities in a few of these platforms. [11].

Evaluation of native and web app runtimesExperimental

apparatus

We evaluated two Android apps, one written in

JavaScript and one in standard Java, on an actual

mobile handset. Apps can use the mobile device's

native API to access their own private set of

subroutines. The program keeps track of how long

a sine-tilted operation lasts. To achieve this

outcome, we included code that snaps a picture at

two distinct times: t0, which occurs right before the

function is run, and t1, which occurs right after the

function is finished and we receive a successful

response. (t2).

Fig 2. Operational definition of the measured job

The operational definition determines the job boundaries, as

seen in Figure 2. Thus, we guarantee to track each function's

execution time from the time it is activated until it is

completely deactivated. actionable response. The total time it

took to execute is equal to the difference ('t') between the two

dates.

Technical Approach

When comparing the performance of two

computers using the same metric, we followed the

advice in [10] to help us evaluate and interpret the

data. Before the geometric mean can be calculated,

data must be standardized to a "known machine" in

order to accurately depict relative system

performance.It is advisable to use this geometric

mean and average the normalized data when

comparing relative performance. Java has become

more reputable as a programming language since

Android comes with native support for it. One way

to normalize time samples in Java and JavaScript is

to divide them by the Java value.
App for mobile devices

The user can initiate a certain procedure by tapping

buttons on the mobile app's graphical user

interface. The user experience for the two mobile

applications was intended to be the same.

according to Figure 3. During each operation,

access to a hardware or software resource is

confirmed by a response or other piece of

information. The program tracks and reports how

long it takes to do the task.In order to do this

thorough examination of the mobile terminal, we

considered several sources:Playback of sound

alerts, activation of vibrators, and accelerometer

access are a few instances of x-factors. Hardware

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

availability.Internet access: utilize it to learn how

to connect to the web, use GPS to find destinations,

etc.A few examples

Since the JavaScript timer could only manage

milliseconds, the choice was predicated on the fact

that Java can accomplish time samples down to the

nanosecond. Every procedure was run a thousand

times to ensure statistical dependability.The test

device was an Android OS 2.2 HTC Nexus One

smartphone. To ensure the repeatability and

reproducibility of our results, we repeated the tests

on an HTC Magic smartphone; the results were not

included in the final report, but were saved for

future reference.to write this essay.

Data analysis

Figure 1 is a summary of the results. The data distribution is

shown by reporting the mean and standard deviation values

in milliseconds. We just examined the data in relative time

units to do performance study after normalizing all time

samples for the Java application.as well as the geometric

means of such figures. Due to machine knowledge, the

geometric mean of Java tasks is always 1. If a JavaScript job

is statistically more efficient than the known machine at doing

the same task, the geometric mean will show a number less

than 1, and if it is statistically less efficient, it will show a

value greater than 1.

Table 1: Time required to run an Android native app vs. a PhoneGap web app

Table 1 reveals that there was only one procedure where the web app was on par with or even better than the native app. This was

the process of beginning a sound notification, which took 35% less time. while it comes to anything else, the performance drops

anywhere from barely perceptible (like 10% slower while getting network data) to very noticeable (like when using the GPS sensor).

Subject for debate

To gain an understanding of the situation, we

examined the resource calls' code-level structures

in each version. We discovered that Java usually

utilizes native methods to access the given resource

directly, but JavaScript can only access it indirectly

by utilizing a sequence of calls that includes one or

more callbacks. As a result, it takes longer to get in

touch with the method, go through the callback

process, and respond to the first requester. There is

a noticeable increase in execution time when an

API requires a complicated call sequence to be

used.PhoneGap is designed so that a foreground

executive method called PhoneGap takes as an

argument a user-space JavaScript function. The

sentence has two objectives.

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

Fig 4. PhoneGap’s method call flow path.

When dealing with resources that need intricate execution

trees to access them, this design could become costly because

of the resource's typical response time and the overhead

involved in tracing the method via the call back tree and

displaying the outcome. Alternative WebFor resource-

specific functionality in the browser's display, apps built

using frameworks that employ this architecture will

experience the same performance overhead.The experimental

setup has shown that there is no performance loss on certain

frequently used functionalities, even if the execution time for

web apps has increased. Importantly, in some instances.

These findings corroborate the assertion in [12] that

commercial applications or those with light code loads are

better suited to web-based mobile apps. (For example, while

doing tasks that heavily use hardware, such as producing 3D

graphics).

Last thoughts

Discussing the pros and negatives of web-based mobile

development requires taking into account a wide range of

viewpoints. Now that platform-specific effort is unnecessary,

savearl platforms may utilize a single application.software

development and distribution processes. When it comes to

using device-specific features or interfacing with other

software resources, the present level of development tools is

severely lacking. Additionally, reports show that web-based

mobile apps have terrible speed, which negatively impacts the

user experience.To demonstrate how much more time is

required to do the same task when employing web-based

programming as opposed to native, platform-specific

capabilities, we examined the performance of web-based

mobile applications built using PhoneGap and the Android

operating system. Using the phone's hardware and software,

we ran experiments and collected data to determine when

execution time begins to increase and under what

circumstances this happens.We found that in seven of eight

tests using machine benchmarks, the web-based version

performed worse than the native one. We tracked it down to

the web-based solution's execution slowdown caused by

repeatedly calling methods with a callback and then waiting

for their response. The more complicated the execution tree,

the longer it takes to retrieve the resource that was asked for

and answer to the requesting process. There will supposedly

be a performance hit, but it'll be too little to matter for most

business applications.Before committing to a multiplatform

framework, developers should weigh a number of factors,

including the likelihood of worse performance as compared

to native programs. The reasons and extent of a benchmark

software's performance degradation are illuminated by this

research. Since the execution time viewpoint is the primary

focus of this article, more work is needed to evaluate other

performance analysis criteria. (Think: data collected from

customer satisfaction surveys, battery life, memory

utilization, etc.).When people love using a mobile app, it

becomes a success. Developers working within the web-

based paradigm should be cognizant of pertinent performance

concerns, work toward improved design and coding

processes, and increase access to multiplatform development

tools in order to provide a truly cross-platform, cohesive user

experience.

Works Cited

[1] Succi, Corral, and Sillitti are the authors. ensuring

that strategies for creating mobile apps are capable of

meeting mission-critical requirements. The MOBICASE

Workshop on Software Engineering for Mobile

Application Development, 2011, articles 9–11. [2]

based on studies conducted by Salminen, Cavallari,

Mikkonen, and Anttonen. Binary software is fading as

end-user software migrates to the web. The Ninth

International Conference on Computing for Creation,

Connection, and Collaboration, Proceedings, 2011,

pages 17–23.

Cavallari and Mikkonen are the three. The 10-year

battle between apps and the open web. The results of

the 2nd Annual Workshop on Software Engineering for

Mobile Application Development, which took place in

tandem with MOBICASE 2011, cover pages 22–26.

Cavallari and Mikkonen [4] look at the internet as a

forum for

 [5] Sillitti A, Succi G, Ramella P, Garibo A, and Corral L.

shift from a platform-specific to a web-based

multiplatform approach to developing mobile apps.

ACM Symposium on New Ideas in Programming and

Reflections on Software, 2011 (ONWARD! 2011, pages

181–183). The source of this data is Bloom et al. (2006).

Review of runtime environments for mobile devices

Write once, use wherever.

Abstract: Geisler, Zelazny, Christmann, and Hagenhoff,

editors. 2008 Third International Conference on Grid

and Pervasive Computing Workshops, pp 132-137.

studies on the effectiveness and usability of different

distribution mechanisms for mobile apps. Pages 210–

218 of the proceedings of the tenth annual

International Conference on Mobile Business (ICMB),

2011.

 [8] Duarte C. and Afonso AP. A case study from

JIL on designing once and implementing globally.

Mobilize, Volume 8, Issue 4, Pages 641-644 2011:

Mobile Web Information Systems, Eighth

International Conference.

[9] Germanic A. La valuationdiescalculator is the

 ISSN 2229-6107 www.ijpast.in

 Vol 8,Issuse 1.Jan 2018

Italian term for assessing computer hardware. The

lecture notes for the computer platform engineering

seminar. 2011 Italian university; University of

Genoa, School of Engineering.

[10] Fleming and Joseph Wallace. Truthful

statistical summarization: how not to deceive with

data. 1986; Vol. 29, no. 3, pp. 218-221. In: The

ACM Communications.

